
Code Control: Developing a Serious Game to Reinforce

Introductory Programming Concepts

SIGCSE Report

PI: Devorah Kletenik, Brooklyn College, City University of New York
Co-PI: Deborah Sturm, College of Staten Island, City University of New York

Summary: We developed a 3D game to teach and reinforce fundamental programming con-
cepts. An innovative feature allows instructors to create customized programming challenges that
students solve in the context of the game. The game was designed to engage and motivate all stu-
dents, with a special focus on women and racial minorities. A preliminary evaluation of the game
in Brooklyn College, College of Staten Island, and Kingsborough Community College indicates
promise in the use of the game as a teaching tool.

1 Background

Majoring in computer science fields offers a number of benefits to students, including a growing
and lucrative job market [30]. However, many students seem to be unable to progress past the first
introductory programming course. Introductory programming courses frequently suffer from high
drop-out and failure rates of over 30% – 50% [5, 28, 16]. The attrition rate is often significantly
higher for female students.

It is commonly observed that learning to program is difficult and that difficulty may account for
the poor retention rates in the introductory class [12, 24, 17]. Our experience with our computing
students is that learning to program demands significant practice time. Students learn how to
program by programming, and the more students program, the easier it is for them to master the
material and become successful in the course. However, many introductory courses suffer from a
lack of sufficient programming practice [4].

The literature on serious games discusses strategies to motivate students to practice program-
ming. Researchers report that the long-standing formal lecture teaching mode is the least popular
with students [27] and less effective than more interactive modes of learning [18]. Serious games
describes those games that accomplish a goal in addition to entertainment. Research on serious
games for education shows that, compared to traditional methods of instructor, game-based learn-
ing is superior at teaching subject matter [26, 15, 23, 31, 29] and increases both long-term retention
and student motivation [26, 23, 13, 29]. Students who learn through games have increased feeling
of alertness, activity, and involvement in contrast to standard lectures [11].

We therefore developed a serious educational game to help engage, motivate and improve the
learning experience for students taking the introductory programming courses at our institutions
and elsewhere. Our innovative platform, called Code Control, is a game that helps reinforce pro-
gramming concepts where instructors can create customized programming challenges that students
solve in the context of the game. An automated compiler and testing environment gives stu-
dents instant feedback, and completing successful programming challenges advances students in
the gameplay.

1

2 Code Control

Code Control is a digital game developed using the Unity 3D platform, that teaches and assesses
programming concepts. It allows instructors to create customized programming challenges for their
students as well as provide correct solutions. The programming challenges are then posed to the
players in the context of the game. We use the Judge0 API1, which is a free open-source API for
code compilation and execution.

Code windows give players code snippets with missing sections to complete; once the players fill
in the missing code, the code is compiled. The students’ solutions are then checked for correctness
by comparing them to the instructor’s solution to see if the output matches. Compiler errors,
execution errors, or positive feedback are are also provided. Customized scripts provide syntax
highlighting. Judge0 supports 42 programming languages; so that any introductory language will
most likely have support in our game. Furthermore, with Judge0 support for multi-file programs,
Code Control can be used in coding courses at all levels.

While a number of serious games for computer science have been created, including some to
teach introductory programming (e.g., [1, 2, 3, 8, 10, 9, 22, 19, 20, 21]), all of these games involve
fixed programming challenges. In contrast, our approach allows instructors to specify their own
challenges that best reinforce what is being taught in class. Additionally, many of these games (e.g.
Gidget [19]) use a simplified programming language that was created for the game, and are de-
signed to teach abstract programming concepts. In contrast, our game uses standard programming
languages and is designed to augment existing programming courses. It is targeted to students who
are learning the basics and want practice to solidify their skills.

The game’s storyline involves a woman looking for endangered animals who are missing from an
animal rescue. The digital name tags contain code that was broken by enemies. The player needs
to find the lost roaming pets by solving the code to fix their name tags, to save the pets. The short
programming challenges act as mini quizzes based on research of the “testing effect” that indicates
that tests actually improve learning [6, 7, 14, 25].

In designing our game, we consulted with students, both gamers and non-gamers, men and
women, and varied races to appeal to a broad audience. It has been particularly designed for a
female audience, featuring a female lead character, avoiding violence and focusing on social goals.
The avatar’s customizable skin/hair colors avoids specifying a specific racial group and gives players
co-ownership.

A database connection allows us to collect detailed analytics of all users’ gameplay (e.g. time
spent per challenge, successes and mistakes made, levels completed, score, etc.) This provides a
wealth of information to instructors as to how this game is being played and what students are
struggling with and succeeding at. Instructors who adopt this game as a course material will be
able to use the game as an informal evaluation mechanism to see which concepts their students
are successful with and with which they need additional practice. Code Control is deployed as a
WebGL and can be played in a browser without requiring installation.

Pictures of the game are given in Figures 1 and 2. Figure 1 depicts the student views of the
gameplay. Figure 2 shows instructor and student views of a problem set.

3 Evaluation

We conducted a feasibility study of a preliminary version of the game at the end of the Fall 2018
semester. Students were recruited from introductory programming courses at Brooklyn College,

1https://api.judge0.com/

2

https://api.judge0.com/

(a) Gameplay (b) Customizable avatar

Figure 1: Game views

(a) Instructor view of problem set (b) Student view of problem set

Figure 2: Problem sets

College of Staten Island, and from Kingsborough Community College. These three colleges are
part of City University of New York (CUNY), the nation’s leading urban public university and the
most racially and ethnically diverse university system in the country. The three CUNY colleges
were chosen because together they represent a variety of student experiences within CUNY (senior,
comprehensive, and community).

Participants in the study were asked to take a short programming quiz, play the game, and fill
out a survey (including another short programming quiz). In total, 75 students joined the study.
We present the institution and genders of the players below:

institution total male female preferred not to say % female
Brooklyn College 52 36 15 1 40.5%
CSI 20 13 7 0 53.8%
Kingsborough 3 3 0 0 0%

We note that female students were disproportionately represented among the participants, com-
pared to their representation in the programming courses at Brooklyn College and CSI (approx-
imately 31% and 18% respectively). Moreover, they seemed enthusiastic about the game, even
though it was still in “beta” mode and under construction, with survey responses such as “It seems
like a fun and engaging way to teach programming.”, “Fun and helpful!”, and “Brought a twist to
coding that made programming a lot funner than the cut and dry homework assignments.”

In our pilot, a number of students could not complete the entire game due to browser incom-
patibilities. Although our focus was on measuring student interest, we also noted that the game
had a measurable effect on student performance: the students who played the entire game had
statistically significantly higher scores on post-tests than on the pre-tests (by an average of about
6%); the students who did not complete the game showed no such learning gains. We are confident

3

that when the game is further developed, student interest and performance will correspondingly
increase.

(As a result of the feedback on the game, we conducted a dramatic overhaul of the structure,
design and story line to make it more flexible, appealing and fun. As a result, the game was not yet
ready for evaluation by the end of the Spring semester. We hope to conduct another study during
the Summer semester.)

4 Funding

The SIGCSE Special Projects funding of $5,000 was used to support the work of an undergrad-
uate student who developed the game. We aim to receive future funding from other sources to
continue our work with Code Control, including creating a dedicated instructors’ portal to see stu-
dent progress; to make the game more flexible in allowing instructors to pose non-programming
challenges (e.g. tracing, Parson’s puzzles); and to conduct a more comprehensive evaluation of its
effectiveness, particularly for female and other underrepresented students.

5 Conclusion

We’d like to thank the SIGCSE Board for supporting our work. We are hopeful that it will have
an impact on students taking the introductory programming course at CUNY as well as at other
institutions.

References

[1] Tiffany Barnes, Eve Powell, Amanda Chaffin, and Heather Lipford. Game2Learn: improving
the motivation of CS1 students. In Proceedings of the 3rd International Conference on Game
Development in Computer Science Education, pages 1–5. ACM, 2008.

[2] Tiffany Barnes, Heather Richter, Amanda Chaffin, Alex Godwin, Eve Powell, Tiffany Ralph,
Paige Matthews, and Hyun Jordan. Game2learn: A study of games as tools for learning
introductory programming concepts. Proceedings of the 38th SIGCSE Technical Symposium
on Computer Science Education, 7, 2007.

[3] Tiffany Barnes, Heather Richter, Eve Powell, Amanda Chaffin, and Alex Godwin.
Game2Learn: building CS1 learning games for retention. In Proceedings of the 12th annual
SIGCSE conference on Innovation and Technology in Computer Science Education.

[4] Theresa Beaubouef and John Mason. Why the high attrition rate for computer science stu-
dents: some thoughts and observations. ACM SIGCSE Bulletin, 37(2):103–106, 2005.

[5] Jens Bennedsen and Michael E. Caspersen. Failure rates in introductory programming.
SIGCSE Bull., 39(2):32–36, June 2007.

[6] Shana K Carpenter and Edward L DeLosh. Impoverished cue support enhances subsequent
retention: Support for the elaborative retrieval explanation of the testing effect. Memory &
cognition, 34(2):268–276, 2006.

[7] Shana K Carpenter, Harold Pashler, and Edward Vul. What types of learning are enhanced
by a cued recall test? Psychonomic Bulletin & Review, 13(5):826–830, 2006.

4

[8] Michael Eagle and Tiffany Barnes. Wu’s castle: teaching arrays and loops in a game. In ACM
SIGCSE Bulletin, volume 40, pages 245–249. ACM, 2008.

[9] Michael Eagle and Tiffany Barnes. Evaluation of a game-based lab assignment. In Proceedings
of the 4th International Conference on Foundations of Digital Games, pages 64–70. ACM,
2009.

[10] Michael Eagle and Tiffany Barnes. Experimental evaluation of an educational game for im-
proved learning in introductory computing. In ACM SIGCSE Bulletin, volume 41, pages
321–325. ACM, 2009.

[11] Michael Grimley, Richard Green, Trond Nilsen, David Thompson, and Russell Tomes. Using
computer games for instruction: The student experience. Active Learning in Higher Education,
12(1):45–56, 2011.

[12] Mark Guzdial. A biased attempt at measuring failure rates in intro-
ductory programming. https://computinged.wordpress.com/2014/09/30/

a-biased-attempt-at-measuring-failure-rates-in-introductory-programming,
2014.

[13] Wen-Hao Huang. Evaluating learners’ motivational and cognitive processing in an online
game-based learning environment. Computers in Human Behavior, 27(2):694–704, 2011.

[14] Jeffrey D Karpicke and Henry L Roediger. Repeated retrieval during learning is the key to
long-term retention. Journal of Memory and Language, 57(2):151–162, 2007.

[15] Mansureh Kebritchi, Atsusi Hirumi, and Haiyan Bai. The effects of modern mathematics
computer games on mathematics achievement and class motivation. Computers & education,
55(2):427–443, 2010.

[16] Päivi Kinnunen and Lauri Malmi. Why students drop out CS1 course? In Proceedings of the
Second International Workshop on Computing Education Research, ICER ’06, 2006.

[17] Päivi Kinnunen and Lauri Malmi. Why students drop out cs1 course? In Proceedings of the
second international workshop on Computing education research, pages 97–108. ACM, 2006.

[18] Jennifer K Knight and William B Wood. Teaching more by lecturing less. Cell biology educa-
tion, 4(4):298–310, 2005.

[19] Michael J Lee and Andrew J Ko. Personifying programming tool feedback improves novice
programmers’ learning. In Proceedings of the seventh international workshop on Computing
education research, pages 109–116. ACM, 2011.

[20] Michael J Lee and Andrew J Ko. Investigating the role of purposeful goals on novices’ engage-
ment in a programming game. In 2012 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 163–166. IEEE, 2012.

[21] Michael J Lee, Andrew J Ko, and Irwin Kwan. In-game assessments increase novice program-
mers’ engagement and level completion speed. In Proceedings of the ninth annual International
ACM Conference on International Computing Education Research, pages 153–160. ACM, 2013.

[22] Michael Jong Lee. Teaching and Engaging with Debugging Puzzles. PhD thesis, University of
Washington, 2015.

5

https://computinged.wordpress.com/2014/09/30/a-biased-attempt-at-measuring-failure-rates-in-introductory-programming
https://computinged.wordpress.com/2014/09/30/a-biased-attempt-at-measuring-failure-rates-in-introductory-programming

[23] Tsung-Yu Liu and Yu-Ling Chu. Using ubiquitous games in an English listening and speaking
course: Impact on learning outcomes and motivation. Computers & Education, 55(2):630–643,
2010.

[24] Andrew Luxton-Reilly. Learning to program is easy. In Proceedings of the 2016 ACM Con-
ference on Innovation and Technology in Computer Science Education, ITiCSE ’16, pages
284–289, New York, NY, USA, 2016. ACM.

[25] Mark A McDaniel, Janis L Anderson, Mary H Derbish, and Nova Morrisette. Testing the
testing effect in the classroom. European Journal of Cognitive Psychology, 19(4-5):494–513,
2007.

[26] Marina Papastergiou. Digital game-based learning in high school computer science education:
Impact on educational effectiveness and student motivation. Computers & Education, 52(1):1–
12, 2009.

[27] Paul Sander, Keith Stevenson, Malcolm King, and David Coates. University students’ expec-
tations of teaching. Studies in Higher education, 25(3):309–323, 2000.

[28] Christopher Watson and Frederick W.B. Li. Failure rates in introductory programming revis-
ited. In Proceedings of the 2014 Conference on Innovation & Technology in Computer Science
Education, ITiCSE ’14, pages 39–44, 2014.

[29] Pieter Wouters, Christof Van Nimwegen, Herre Van Oostendorp, and Erik D Van Der Spek. A
meta-analysis of the cognitive and motivational effects of serious games. Journal of Educational
Psychology, 105(2):249–265, 2013.

[30] Yi Xue and Richard C Larson. STEM crisis or STEM surplus: Yes and yes. Monthly Lab.
Rev., 138:1, 2015.

[31] Ya-Ting Carolyn Yang. Building virtual cities, inspiring intelligent citizens: Digital games
for developing students’ problem solving and learning motivation. Computers & Education,
59(2):365–377, 2012.

6

	Background
	Code Control
	Evaluation
	Funding
	Conclusion

